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Abstract

This paper aims to study the effect of the hydrophobicity of protein subsequences on the backbone structure. In this
work backbone structure is represented by the sequence of angles between each three consecutive C, atoms in space.
The main idea is based on clustering a large set of protein subsequences — taken from a big number of proteins —
using their hydrophobicity patterns as a similarity measurement. The standard probability density function that best
fit the observed angle measurements of each of the resulting clusters is determined through a Kolmogorov-Smirnov
(KS) test. The resulting fits are then studied in terms of their KS-statistics and the number of rejected critical values
in order to determine the relationship between subsequence length, hydrophobicity and backbone angle
measurements. It is found that the longer the protein subsequence the higher the possibility of getting a good fit.
Also, it is observed that clustered data achieve better fits than unclustered data.
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1. Introduction

Protein structure prediction has been one of the most challenging problems facing researchers over the few last
decades. Exact prediction was found to be too far from today's state of the art. Even using simplified forms such as
the Hydrophobic-Polar (HP) model is found to be NP-complete [1]. Several approaches have been proposed to
simplify the prediction process. These approaches are either ab initio that assumes no prior knowledge about the
protein under study or homology methods that use sequence similarity with already known structures to guide the
search. Hybrid approaches are also available. Most of the hybrid approaches tend to use double-staged prediction
algorithms [16]. In this type, the output of the first stage is taken as an input into the second stage. In many cases the
first stage is used to approximately predict the secondary structure of a protein [9] while the second stage continues
to approximately predict the tertiary structure [16]. Due to the difficulty of the folding problem, researchers use
approximated and simpler protein representations like using lattice structures such as HP models [9] and face-
centered-cubic lattice [8,16] and/or using heuristic techniques in order to simplify the calculations [2,7,17]. This
study tries to introduce an alternative approach to be used in the first stage through building a probabilistic database
of protein backbone angles based on the hydrophobicity of its constituent amino-acids.

The use of subsequence structural information as a step towards the ultimate goal of complete prediction is
widely used in literature [4,6,10,14,15]. Another approach is to deal with the protein as a whole [7,11,12,13,16,17]
trying to find the optimum conformation with minimum free energy [11]. Statistical analysis of protein subsequences
has appeared in literature too. Rong She et al. used two types of subsequence classifiers to identify outer membrane
proteins of Gram-negative bacteria [14]. Eran Segale and Daphne Koller introduced a general probabilistic
framework for clustering biological data into a hierarchy [5]. Eli Hershkovitz et al. used torsion angles to search for
clusters in RNA conformational space [4]. Estimating the probability density function was used by Diego Rother et
al. with the notion of ensembles [3]. Marcio Dorn and Osmar Norberto used the ¢ and ¥ angles of the central residue
of a subsequence along with a secondary structure prediction method to cluster subsequences (fragments) [10]. The
approach proposed here tries to find the best probability distributions fitting the angle measurements of subsequences
clustered based on their hydrophobicity. These fits are then analyzed statistically to determine the effect of
hydrophobicity and subsequence length on backbone angles. The paper is organized as follows; section 1 explains



the representation used throughout the rest of the paper. Section 2 discusses the proposed approach in steps. Section
3 discusses the experimental results and finally section 4 concludes the study.

2. Representation

Fig.2 O angles

A subsequence of residues is represented by a vector (v). Each residue contains three main consecutive atoms; a
central Carbon atom (C,) surrounded by another Carbon atom (C) and a Nitrogen atom (N). A side chain is
connected to the central C, atom. This side chain is what differentiates residues from each other. Each amino acid
contains two torsion angles; ¢ and W as shown in fig.1. This study is not concerned with these torsion angles
however the main concern is the angle @ which is the angle between the three consecutive C, atoms of the three
central residues of the subsequence. @ is the angle between each two lines connecting C, atoms in fig.2. Thus a
subsequence S is represented by a vector v and an angle ©:

S =(v, ©: v=<aay, aay, ... adpn.1>) ()

Where p is the starting position of the subsequence and aa, represents the amino-acid at position p. Notice that
the angle taken here is neither the ¢ nor the ¥ angles of the central amino-acid, alternatively one angle is taken to
represent the relative positions of every three consecutive amino-acids. A centroid is represented by a simple vector
of n hydrophobicity values:

C = <h0, hl,... hn-l> (2)
3. Proposed approach

In this study we used a sample of 1089 proteins randomly selected from the SCOP protein database.
Subsequences of length 3, 5 and 7 are extracted from each protein. K-means clustering is performed on the three
groups of subsequences according to their hydrophobicity. Both before and after clustering a KS test is used to fit the
observed angles measurements into one of 66 standard continuous probability distributions, which are: Beta, Burr,
Burr (4P)1, Cauchy, Chi-Squared, Chi-Squared (2P), Dagum, Dagum (4P), Erlang, Erlang (3P), Error,
Error Function, Exponential, Exponential (2P), Fatigue Life, Fatigue Life (3P), Frechet, Frechet (3P), Gamma,
Gamma (3P), Gen. Extreme Value, Gen. Gamma, Gen. Gamma (4P), Gen. Logistic, Gen. Pareto, Gumbel Max,
Gumbel Min, Hypersecant, Inv. Gaussian, Inv. Gaussian (3P), Johnson SB, Johnson SU, Kumaraswamy, Laplace,
Levy, Levy(2P), Log-Gamma, Log-Logistic, Log-Logistic (3P), Log-Pearson3, Logistic, Lognormal,
Lognormal (3P), Nakagami, Normal, Pareto, Pareto 2, Pearson 5, Pearson 5 (3P), Pearson 6, Pearson 6 (4P), Pert,
Phased Bi-Exponential, Phased Bi-Weibull, Power Function, Rayleigh, Rayleigh (2P), Reciprocal, Rice, Student's t,

' 2P, 3P and 4P refer to two, three and four parameters distributions respectively. A typical distribution is said to be

(n-1)P if its location parameter is set to 1 and (n)P otherwise.
Y



Triangular, Uniform, Wakeby, Weibull and Weibull (3P). Parameters are estimated using Maximum Likelihood
Estimation (MLE). The following points explain the steps of the approach:

1.

Initially all proteins are divided into subsequences of residues i.e. amino acids of length n. A protein of length
L is divided into L-n+1 subsequences starting at (aay, ... aa,.;) and ending at (aay., ... aa;.;). Therefore the

total number of subsequences is ZILV: o(Li =n + 1) where N is the total number of proteins. The angle & is the

angle between the three residues in the center of the subsequence (aap.ny2, a8gp+n+2)2, A(pen+ay2), Where p is the
start position of the subsequence in the whole protein sequence. The subsequences are overlapping i.e. every
two consecutive subsequences of length n shares n-I residues. The value of @ is calculated using the
coordinates of C, atoms of these residues in the SCOP database. Obviously the number of residues in a
subsequence must be odd so that the number of residues on both sides of the angle is the same. Typical values
of n used in this study are 3, 5 and 7. Higher values of n are possible but they are computationally intensive.

Before the clustering algorithm starts, a KS test is performed to fit all the observed — unclustered —
measurements into one of the previously listed standard continuous probability distributions.

The sets of subsequences generated from step 1 are then fed to the k-means clustering algorithm each at a
time. This algorithm uses residues hydrophobicity as a similarity measurement (discussed later).

Centroids are pre-known and are based on the value of n. When creating the initial centroids each position in
the subsequence is assumed to be either hydrophobic2 (H) or hydrophilic3 P)". Taking the two extremes of
hydrophobicity into consideration, namely Isoleucine (+4.5) and Arginine (-4.5), leaves us with only two
choices for each residue position. Calculating all the permutations of a subsequence of length n results in a
total of 2" centroids.

Similarity function: Let the hydrophobicity of a residue (aa) be (aa.h). The similarity function measures how a
subsequence S is similar to some centroid C in terms of hydrophobicity. The function simply calculates the
average of differences in hydrophobicity between the residues of S and the corresponding hydrophobicity
values in C.

Qizo(aai.h —hy))/n (3)

After clustering is completed, another KS test is performed on the observed clustered measurements of each
centroid against the same 66 standard continuous probability distributions.

The KS statistic as well as the number of average number of rejected critical values (out of five values) is
recorded before and after clustering.

4. Experiments and results

Table 1 summarizes the best fitting distributions for all the three values of n. The goodness of these fits will be

discussed later in this section.

Table 1 best fittin,

distribution of each centroid of the three values of n

continuous distribution

centroids that the continuous distribution best fits

n=3

Burr

Burr(4p)

Gen. Extreme Value

Gen. Pareto

Johnson SB

n=>5

Dagum(4p)

Gumbel Min.

Gen. Extreme Value

Burr(4p)

, 10, 11, 14, 18, 21, 22, 23, 24, 27, 30, 31

Weibull(3p)

2,13, 15, 16, 25, 26, 28, 29

2 Having a strong aversion for water
3 Having a strong affinity for water

4 P here stands for "polar"” which has the same meaning as "hydrophilic".



n="7

Weibull(3p) 3,21,79

Burr(4p) 20, 32, 40, 60, 67, 71, 74, 75, 83, 85, 105
Dagum 4, 80

Dagum(4p) 41, 90

Gen. Gamma(4p) 69, 84, 106

2,6,7,9,12,14, 15, 19, 33, 34, 35, 36, 37, 45, 46,47, 49, 79, 87,
89, 94, 95, 107, 117, 125

Gumbel Min. 66

Log-Logistic 42,116, 118

1,5,8,10, 11, 13, 16, 17, 18, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
38, 39, 43, 44, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63,
Wakeby 64, 65, 68, 70, 72, 73, 76, 77, 78, 81, 82, 86, 88, 91, 92, 93, 96, 98,
99, 100, 101, 102, 103, 104, 108, 109, 110, 111, 112, 113, 114,
115,119, 120, 121, 122, 123, 124, 126, 127

Gen. Logistic

KS-statistic
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Fig.3 average KS-statistic of clustered data

From fig.3 it is quite obvious that the longer the sequence the smaller the KS-statistic. The values of the statistic
are 0.0937, 0.0243 and 0.0202 for subsequences of length 3, 5 and 7 respectively. From fig.4 it is apparent that the
number of rejected critical values greatly decreases with longer subsequences. For subsequences of length 3 all the
five critical points are rejected for all the centroids. Thus subsequences of length 3 have no reliable fit among the
tested distributions. 5 residues centroids have better results in terms of the number of rejected points. An average of
2.94 critical points is rejected among all the centroids. Finally centroids of length 7 achieves an average of zero
rejected critical point, i.e. all the critical point for all the centroids of length 7 are accepted. Clearly, the length of the
subsequence is effective in terms of the KS-statistic and the number of rejected critical values.

Rejected Values
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Fig. 4 average number of rejected critical values out of 5

The same KS-test was performed on unclustered data for n=3, n=5 and n=7. For the three values of n the best
fitting distribution was the Wakeby distribution. The value of the test statistics for the three was found to be 0.09041,
0.012 and 0.013 respectively. However these results are not as interesting as they seem to be. Actually all the 5
critical values were rejected for all the values of n for the unclustered data.

5. Conclusion

From the previous results it is now clear that there exists a direct relationship between the hydrophobicity of the
residues of a subsequence and the measurements of the backbone angles. Classifying a subsequence into one of the
available clusters will give a good insight of the angle measurements and consequently the structure of the

¢



subsequence. Also the length of the subsequence is an effective factor in the angle prediction process. Longer
subsequences achieve better fits in one of the standard continuous probability distributions. It is found that
unclustered subsequences have unreliable results compared to clustered subsequences.

6. Future work

These results can be used to guide the search process in a complete protein structure prediction algorithm. Using
these results will greatly reduce the search space which can increase both the efficiency and the effectiveness of the
search process. This angle-hydrophobicity relationship can be used combined with heuristic techniques like genetic
algorithm to restrict the initial population to statistically familiar conformation. In this case it is better to apply these
guiding rules to only a portion of the initial population in order to leave a chance to the new unfamiliar
conformations. Approximations of our results can be applied to crystalline lattices protein models like cube
octahedron lattice model which allows the use of several possible angles 60", 90", 120" and 180". Applying the
results to this algorithm will allow the predictor to use the most statistically realistic angle of the available
alternatives based on its neighboring residues. Also, it is possible to investigate applying the same approach on
subsequences of length more than 7 residues and minimize the processing time.
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